#coding:utf-8import mathimport copyimport numpy as npimport matplotlib.pyplot as pltisdebug = True#指定k个高斯分布參数,这里指定k=2。
def ini_data(Sigma,Mu1,Mu2,k,N): global X global Mu global Expectations X = np.zeros((1,N)) Mu = np.random.random(2) print Mu Expectations = np.zeros((N,k)) for i in xrange(0,N): if np.random.random(1) > 0.5: X[0,i] = np.random.normal()*Sigma + Mu1 else: X[0,i] = np.random.normal()*Sigma + Mu2 if isdebug: print "***********" print u"初始观測数据X:" print X def e_step(Sigma,k,N): global Expectations global Mu global X for i in xrange(0,N): Denom = 0 for j in xrange(0,k): Denom += math.exp((-1/(2*(float(Sigma**2))))*(float(X[0,i]-Mu[j]))**2) for j in xrange(0,k): Numer = math.exp((-1/(2*(float(Sigma**2))))*(float(X[0,i]-Mu[j]))**2) Expectations[i,j] = Numer/Denom if isdebug: print "***********" print u"隐藏变量E(Z):" print len(Expectations) print Expectations.size print Expectations.shape print Expectations def m_step(k,N): global Expectations global X for j in xrange(0,k): Numer = 0 Denom = 0 for i in xrange(0,N): Numer += Expectations[i,j]*X[0,i] Denom +=Expectations[i,j] Mu[j] = Numer / Denom def run(Sigma,Mu1,Mu2,k,N,iter_num,Epsilon): ini_data(Sigma,Mu1,Mu2,k,N) print u"初始<u1,u2>:", Mu for i in range(iter_num): Old_Mu = copy.deepcopy(Mu) e_step(Sigma,k,N) m_step(k,N) print i,Mu if sum(abs(Mu-Old_Mu)) < Epsilon: break if __name__ == '__main__': run(6,40,20,2,1000,1000,0.0001) plt.hist(X[0,:],100) plt.show()